- Bạn vui lòng tham khảo Thỏa Thuận Sử Dụng của Thư Viện Số
Tài liệu Thư viện số
Danh mục TaiLieu.VN
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 0: Giới thiệu môn học
Bài giảng "Nhập môn Học máy và Khai phá dữ liệu" được biên soạn với mục tiêu nhằm giúp học viên có kiến thức cơ bản về học máy; có hiểu biết về các phương pháp học máy, các điểm mạnh (ưu điểm) và các điểm yếu (nhược điểm) của các giải thuật học máy và khai phá dữ liệu; làm quen và sử dụng được thư viện Scikit-learn; có kinh nghiệm...
12 p codienxaydungbacninh 20/02/2024 82 6
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Phương pháp học máy, Khai phá dữ liệu, Thư viện Scikit-learn, Học dựa trên xác suất
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 9.2: Học dựa trên xác suất
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 9.2: Học dựa trên xác suất. Chương này cung cấp cho học viên những nội dung về: expectation maximization; GMM và K-means; thuật toán EM; mô hình hỗn hợp và phân cụm; mạng nơron để thực hiện suy diễn Bayes;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
22 p codienxaydungbacninh 20/02/2024 108 6
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Học dựa trên xác suất, Naïve gradient decent, Huấn luyện K-means, Thuật toán EM
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 1.2: Giới thiệu về Học máy và khai phá dữ liệu. Chương này cung cấp cho học viên những nội dung về: nguồn dữ liệu; khai phá dữ liệu; phát hiện tri thức và khai phá dữ liệu; dữ liệu – thông tin – tri thức;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
29 p codienxaydungbacninh 20/02/2024 109 8
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Học máy và khai phá dữ liệu, Khai phá dữ liệu, Kiểu dữ liệu có cấu trúc, Kiểu dữ liệu phi cấu trúc
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 6: Phân loại và đánh giá hiệu năng
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 6: Phân loại và đánh giá hiệu năng. Chương này cung cấp cho học viên những nội dung về: đánh giá hiệu năng hệ thống học máy; các phương pháp đánh giá; lựa chọn tham số; đánh giá và lựa chọn mô hình; các tiêu chí đánh giá;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
30 p codienxaydungbacninh 20/02/2024 73 8
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Đánh giá hiệu năng hệ thống học máy, Học có giám sát, Multi-class classification, Multi-label classification
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 4+5: Phân cụm
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 4+5: Phân cụm. Chương này cung cấp cho học viên những nội dung về: bài toán học có giám sát (Supervised learning) và bài toán học không giám sát (Unsupervised learning); giải thuật phân cụm; đánh giá chất lượng phân cụm (Clustering quality);... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
32 p codienxaydungbacninh 20/02/2024 80 7
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Giải thuật phân cụm, Đánh giá chất lượng phân cụm, Phương pháp K-means, Thuật toán Online K-means
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 8: Cây quyết định và rừng ngẫu nhiên
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 8: Cây quyết định và rừng ngẫu nhiên. Chương này cung cấp cho học viên những nội dung về: cây quyết định (Decision tree); biểu diễn cây quyết định; học cây quyết định bằng ID3; vài vấn đề trong ID3; cây quyết định cho hồi quy; rừng ngẫu nhiên (Random forests);... Mời các bạn cùng tham khảo chi...
43 p codienxaydungbacninh 20/02/2024 87 8
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Cây quyết định, Rừng ngẫu nhiên, Học cây quyết định bằng ID3, Biểu diễn cây quyết định
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 7: Học dựa trên láng giềng gần nhất (KNN)
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 7: Học dựa trên láng giềng gần nhất (KNN). Chương này cung cấp cho học viên những nội dung về: học dựa trên các láng giềng gần nhất; giải thuật k-NN cho phân lớp; hàm tính khoảng cách; chuẩn hóa miền giá trị thuộc tính;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
23 p codienxaydungbacninh 20/02/2024 68 6
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Học dựa trên láng giềng gần nhất, K-nearest neighbors (k-NN), Hàm tính khoảng cách, Hàm khoảng cách Euclid
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 12: Khai phá tập mục thường xuyên và các luật kết hợp. Chương này cung cấp cho học viên những nội dung về: các khái niệm cơ bản; mô hình luật kết hợp; cơ sở dữ liệu giao dịch T; bài toán khai phá luật kết hợp; giải thuật Apriori; các vấn đề luật kết hợp;... Mời các bạn cùng tham khảo...
28 p codienxaydungbacninh 20/02/2024 79 7
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Khai phá tập mục thường xuyên, Mô hình luật kết hợp, Giải thuật Apriori, Khai phá luật kết hợp
Bài giảng Khai phá dữ liệu (Data mining): Introduction - Trịnh Tấn Đạt
Bài giảng Khai phá dữ liệu (Data mining): Introduction, chương này trình bày những nội dung về: giới thiệu môn học, tài liệu tham khảo, hình thức đánh giá; danh sách các đề tài - đồ án môn học; các vấn đề trong data mining;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
26 p codienxaydungbacninh 23/12/2023 102 6
Từ khóa: Bài giảng Khai phá dữ liệu, Khai phá dữ liệu, Data mining, Suy luận thống kê, Cấu trúc toán học, Hồi quy dữ liệu, Quá trình trích xuất tri thức
Bài giảng Khai phá dữ liệu (Data mining): Linear regression - Trịnh Tấn Đạt
Bài giảng Khai phá dữ liệu (Data mining): Linear regression, chương này trình bày những nội dung về: khái niệm hồi qui tuyến tính (linear regression); hồi qui tuyến tính đơn biến; hồi qui tuyến tính đa biến; phương pháp ước lượng tham số; các mở rộng; linear regression dùng gradient descent;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
64 p codienxaydungbacninh 23/12/2023 133 6
Từ khóa: Bài giảng Khai phá dữ liệu, Khai phá dữ liệu, Data mining, Linear regression, Hồi qui tuyến tính, Hồi qui tuyến tính đơn biến, Hồi qui tuyến tính đa biến, Phương pháp ước lượng tham số
Bài giảng Khai phá dữ liệu (Data mining): Naïve Bayes Classification - Trịnh Tấn Đạt
Bài giảng Khai phá dữ liệu (Data mining): Naïve Bayes Classification, chương này trình bày những nội dung về: giới thiệu Naïve Bayes Classification (NBC); mô hình toán; các dạng phân phối dùng trong NBC; các ví dụ và bài tập;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
36 p codienxaydungbacninh 23/12/2023 88 8
Từ khóa: Bài giảng Khai phá dữ liệu, Khai phá dữ liệu, Data mining, Naïve Bayes Classification, Real time prediction, Công thức Bayes tổng quát, Dữ liệu rời rạc
Bài giảng Khai phá dữ liệu (Data mining): Dimensionality reduction and feature selection, chương này trình bày những nội dung về: introduction to dimensionality reduction and feature selection; principal component analysis (PCA); fisher’s linear discriminant analysis (LDA);... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
81 p codienxaydungbacninh 23/12/2023 119 8
Từ khóa: Bài giảng Khai phá dữ liệu, Khai phá dữ liệu, Data mining, Dimensionality reduction, Feature selection, Principal component analysis, Fisher’s linear discriminant analysis, Linear discriminant analysis
Đăng nhập
Bộ sưu tập nổi bật